FLAT ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN E4
نویسندگان
چکیده
منابع مشابه
To Specify Surfaces of Revolution with Pointwise 1-type Gauss Map in 3-dimensional Minkowski Space
In this paper, by the studying of the Gauss map, Laplacian operator, curvatures of surfaces in R 1 and Bour’s theorem, we are going to identify surfaces of revolution with pointwise 1-type Gauss map property in 3−dimensional Minkowski space. Introduction The classification of submanifolds in Euclidean and Non-Euclidean spaces is one of the interesting topics in differential geometry and in this...
متن کاملL_1 operator and Gauss map of quadric surfaces
The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...
متن کاملThe Gauss Map for Surfaces: Part 1. the Affine Case
Let M be a connected oriented surface and let G'2 be the Grassmannian of oriented 2-planes in Euclidean (2 + c)-space. E2 + l. Smooth maps t: M -» (7f are studied to determine whether or not they are Gauss maps. Both local and global results are obtained. If í is a Gauss map of an immersion X: M -» E2 + 1, we study the extent to which / uniquely determines X under certain circumstances. Let X: ...
متن کاملGauss map computation for free-form surfaces
The Gauss map of a smooth doubly{curved surface characterizes the range of variation of the surface normal as an area on the unit sphere. An algorithm to approximate the Gauss map boundary to any desired accuracy is presented, in the context of a tensor{product polynomial surface patch, r(u;v) for (u; v) 2 0; 1 ] 0; 1 ]. Boundary segments of the Gauss map correspond to variations of the normal ...
متن کاملA note on surfaces with prescribed oriented Euclidean Gauss map
We present another proof of a theorem due to Hoffman and Osserman in Euclidean space concerning the determination of a conformal immersion by its Gauss map. Our approach depends on geometric quantities, that is, the hyperbolic Gauss map G and formulae obtained in hyperbolic space. We use the idea that the Euclidean Gauss map and the hyperbolic Gauss map with some compatibility relation determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Honam Mathematical Journal
سال: 2016
ISSN: 1225-293X
DOI: 10.5831/hmj.2016.38.2.305